#### Лабораторная работа № 260-2

# ВЗАИМОДЕЙСТВИЕ γ-ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ

**Цель работы**: изучить механизмы взаимодействия *γ*-излучения с веществом; измерить функцию пропускания и рассчитать коэффициент поглощения *γ*-излучения Cs-137 в алюминиевом и свинцовом поглотителях; определить энергию *γ*-излучения.

#### введение

При прохождении ядерного излучения через вещество его энергия передается окружающей среде, изменяя ее свойства. Механизмы взаимодействия излучения с веществом важно знать для того, чтобы уметь регистрировать излучение, а также представлять степень биологической опасности и применять эффективные меры защиты. Данная работа посвящена изучению взаимодействия γ-излучения с веществом.

К γ-излучению относят электромагнитные волны, испускаемые при ядерных превращениях или аннигиляции частиц. В квантовой теории это излучение представляет собой поток частиц, называемых γ-квантами. Нижний предел энергии γ-квантов имеет порядок десятков килоэлектронвольт (кэВ). Естественного верхнего предела энергии нет.

В основе поглощения у-излучения веществом лежит электромагнитное взаимодействие.

При прохождении пучка γ-квантов через вещество они вступают во взаимодействие с атомами и вызывают ряд явлений, при этом γ-квант или поглощается целиком, или теряет часть своей энергии, изменяя направление распространения. Реализация того или иного механизма взаимодействия γ-квантов с веществом носит вероятностный характер и зависит как от свойств самого γ-излучения (его энергии), так и от свойств вещества (например, его плотности и элементного состава).

#### ПРОХОЖДЕНИЕ *ү* - ИЗЛУЧЕНИЯ ЧЕРЕЗ ВЕЩЕСТВО

Пусть на поглотитель падает монохроматический параллельный пучок  $\gamma$ -квантов. Число взаимодействий (рассеяний и поглощений) в бесконечно тонком слое вещества поглотителя dx пропорционально концентрации атомов в веществе поглотителя a, интенсивности падающего пучка N:

$$-dN = a\sigma Ndx . (1)$$

Полагая, что каждый акт взаимодействия приводит к выбыванию  $\gamma$  - кванта из пучка, после интегрирования в выражении (1) получаем закон ослабления  $\gamma$ -квантов в веществе поглотителя:

$$N = N_0 e^{-a\sigma x},\tag{2}$$

где N – число  $\gamma$ -квантов с энергией  $E_{\gamma}$  после прохождения слоя поглотителя равного x;  $N_0$  – число  $\gamma$ -квантов с той же энергией, падающих на поглотитель;  $\sigma$  – эффективное сечение взаимодействия  $\gamma$ -квантов.

Эффективное сечение играет фундаментальную роль в ядерной физике при описании ядерных взаимодействий, так как характеризует интенсивность процесса. Его величина зависит от энергии  $\gamma$ -квантов  $E_{\gamma}$  и от среднего эффективного заряда вещества поглотителя Z. Сечение имеет размерность площади [ $\sigma$ ] =  $L^2$ .

Произведение  $a\sigma$  называется линейным коэффициентом ослабления  $\tau$  моноэнергетического пучка  $\gamma$ -квантов;  $[\tau] = 1/L$ .

В некоторых случаях удобнее пользоваться массовым коэффициентом ослабления µ:

$$\mu = \tau / \rho, \tag{3}$$

где  $\rho$  – плотность вещества;  $[\rho] = M/L^3$ . Размерность коэффициента  $\mu$  равна  $[\mu] = L^2/M$ . Массовый коэффициент  $\mu$  зависит от энергии  $\gamma$ -квантов  $E_{\gamma}$ , Z вещества поглотителя и концентрации атомов в веществе a.

Таким образом, для моноэнергетического параллельного пучка у-квантов выражение (2) можно записать в виде

$$N = N_0 e^{-\mu \rho x} = N_0 e^{-\mu d}, \qquad (4)$$

где массовая толщина *d* равняется  $\rho x$ ;  $[d] = M/L^2$ .

Необходимо отметить, что выражение (4) справедливо, если пучок  $\gamma$ -квантов моноэнергетический и нерасходящийся. Если пучок содержит  $\gamma$ -кванты различных энергий  $E_{\gamma i}$ , выражение (4) принимает вид:

$$N = \sum N_{0i} e^{-\mu_i d} ,$$

где суммирование ведется по всем энергиям, так как коэффициент ослабления зависит от энергии ү-квантов. Если пучок расходящийся, необходимо учесть зависимость пути *x*, проходимого излучением в поглотителе, от направления распространения излучения. Подчеркнем, что в выражениях (2) и (4), описывающих уменьшение числа  $\gamma$ -квантов, величина N – это число  $\gamma$ -квантов, прошедших поглотитель толщиной *х без взаимодействия*. Следовательно, число провзаимодействовавших  $\gamma$ -квантов в поглотителе толщиной *х* равно

$$N_0 - N = N_0 (1 - e^{-\mu d}).$$

### МЕХАНИЗМЫ ВЗАИМОДЕЙСТВИЯ γ-ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ

Известно большое число различных взаимодействий  $\gamma$ -излучения с веществом. Практический же интерес представляют следующие три процесса: фотоэлектрическое поглощение  $\gamma$ -кванта (фотоэффект), рассеяние  $\gamma$ -кванта на электронах (комптон-эффект) и рождение  $\gamma$ -квантом электрон-позитронных пар (эффект образования пар).

#### Фотоэффект

Если энергия  $\gamma$ -кванта  $E_{\gamma}$  больше энергии связи какого-нибудь электрона оболочки атома ( $E_{\gamma} >> I_i$ ), то может иметь место фотоэлектрическое поглощение  $\gamma$ -кванта (фотоэффект). Явление фотоэффекта состоит в том, что энергия  $\gamma$ -кванта  $E_{\gamma}$  целиком поглощается атомом, а один из электронов оболочки, называемый фотоэлектроном, выбрасывается за пределы атома. Используя закон сохранения энергии, можно определить кинетическую энергию фотоэлектрона  $E_e$ :

$$E_e = E_{\gamma} - E_{\mathfrak{A}\mathfrak{A}} - I_i. \tag{5}$$

 $E_{\rm sqd}$  – энергия отдачи ядра; однако величина энергии отдачи ядра  $E_{\rm sqd}$  мала вследствие того, что масса ядра  $m_{\rm sqd}$  значительно больше массы электрона  $m_0: m_{\rm sqd} >> m_0$ ; поэтому в выражении (5) членом  $E_{\rm sqd}$  можно пренебречь. Следовательно, при фотоэффекте электрону, выброшенному за пределы атома, передается почти вся энергия падающего  $\gamma$ -кванта, а  $\gamma$ -квант перестает существовать.  $I_i$  – ионизационный потенциал соответствующей *i*-оболочки атома (i = K, L, M...).

Атом, потерявший электрон, оказывается в возбужденном состоянии; освободившийся уровень энергии в атоме заполняется электроном с выше расположенной оболочки. Этот процесс сопровождается либо испусканием характеристического рентгеновского излучения, либо испусканием электрона Оже.

Вероятность вылета фотоэлектронов под некоторым углом  $\varphi$  к направлению полета  $\gamma$ -кванта зависит от энергии фотоэлектронов  $E_e$ , которую им передал  $\gamma$ -квант: при малых энергиях  $E_e$  фотоэлектроны испускаются преимущественно в направлении, перпендикулярном пучку  $\gamma$ -квантов; с ростом  $E_e$  средний угол вылета фотоэлектронов  $\varphi$  уменьшается. На рис. 1 приведено угловое распределение фотоэлектронов.



Рис. 1. Угловое распределение фотоэлектронов

При  $m_0 c^2 > E_{\gamma} >> I_i (i = K)$  сечение  $\sigma_{\phi}$  меняется по закону  $\sigma_{\phi} \approx (1/E_{\gamma})^{\frac{7}{2}},$ 

а при  $E_{\gamma} >> m_0 c^2$  – по закону

$$\sigma_{\oplus} \approx (1/E_{\gamma}).$$

При очень больших энергиях  $E_{\gamma}$  сечение фотоэффекта  $\sigma_{\phi}$  становится очень мало, так как для фотоэффекта существенна связь электрона с атомом, которому передается часть импульса фотона: чем меньше связь электрона с атомом по сравнению с энергией фотона  $E_{\gamma}$ , тем менее вероятен фотоэффект. Это означает, что при высоких энергиях вклад фотоэффекта в ослабление пучка  $\gamma$ -квантов гораздо меньше, чем при более низких энергиях (см. рис. 2). Кроме того, величина сечения фотоэффекта  $\sigma_{\phi}$  резко зависит от среднего эффективного заряда вещества Z:

$$\sigma_{\phi} \sim Z^5$$
,

что так же объясняется различной связанностью электронов. В легких элементах электроны связаны кулоновскими силами ядра относительно слабее, чем в тяжелых. Поэтому фотоэффект особенно существенен для тяжелых веществ, где он идет с заметной вероятностью даже при высо-

ких энергиях. Следовательно, для ослабления пучка  $\gamma$ -квантов необходимо использовать вещества с большим Z.



Рис. 2. Зависимость сечения фотоэффекта от энергии у-излучения

#### Комптон-эффект

Если энергия  $\gamma$ -квантов существенно превышает энергию связи электронов в атоме, то, рассматривая рассеяние  $\gamma$ -квантов на электронах, можно считать последние свободными (или слабо связанными). Такое рассеяние  $\gamma$ -квантов называют комптоновским рассеянием или комптон-эффектом. В результате комптон-эффекта вместо первичного фотона с энергией  $E_{\gamma}$  появляется рассеянный фотон с энергией  $E_{\gamma'} < E_{\gamma}$ , а электрон, на котором произошло рассеяние, называемый электроном отдачи или комптон-электроном, приобретает кинетическую энергию, равную

$$E_e = E_{\gamma} - E_{\gamma'}.$$

Пользуясь законами сохранения энергии и импульса, можно показать, что энергия рассеянного  $\gamma$ -кванта  $E_{\gamma'}$  уменьшается с ростом угла рассеяния  $\theta$ . Убывание энергии рассеянного  $\gamma$ -кванта  $E_{\gamma'}$  с ростом угла рассеяния  $\theta$  соответствует возрастанию энергии электрона отдачи  $E_e$ :

$$E_{\gamma'} = \frac{E_{\gamma}}{\left[1 + (1 - \cos\theta)\varepsilon\right]};$$

$$E_e = E_{\gamma} \left[\frac{2\varepsilon}{1 + 2\varepsilon + (1 + \varepsilon)^2 \operatorname{tg}^2 \Psi}\right],$$
(6)

где  $\varepsilon = E_{\gamma} / m_0 c^2$ , а  $\Psi$  – угол вылета комптон-электрона.

Так как угол  $\theta$  рассеяния  $\gamma$ -кванта может меняться от 0 до 180°, то энергия рассеянного  $\gamma$ -кванта  $E_{\gamma'}$  (как видно из (6)) уменьшается от  $E_{\gamma}$  до  $E'_{\gamma M U H}$ :

$$E'_{\gamma M \mu H} = E_{\gamma} / (1 + 2 \varepsilon).$$

Однако с изменением угла  $\theta$  от 0 до 180° угол вылета электрона отдачи изменяется от 90° до 0. При этом энергия электрона отдачи  $E_e$  возрастает от 0 до  $E_{emakc}$ :

$$E_{e\text{MAKC}} = 2\varepsilon E_{\gamma} / (1 + 2\varepsilon)$$
.

На рис. 3 приведен энергетический спектр комптоновских электронов отдачи.



Рис. 3. Энергетический спектр комптоновских электронов отдачи

Из рис. З видно, что при высоких энергиях  $E_e$  распределение комптон-электронов почти равновероятно, за исключением области вблизи максимальной энергии электронов  $E_{e_{Makc}}$ . Электроны отдачи при комптон-эффекте вылетают преимущественно вдоль первоначального направления движения  $\gamma$ -квантов: чем выше энергия падающих  $\gamma$ -квантов, тем эта анизотропия сильнее.

Зависимость величины сечения рассеяния  $\sigma_{\kappa}$   $\gamma$ -квантов на свободном (слабо связанном) электроне показана на рис. 4. С увеличением энергии  $\gamma$ -кванта  $E_{\gamma}$  сечение комптоновского рассеяния  $\sigma_{\kappa}$  убывает по закону:

$$\sigma_{\kappa} \sim Z / E_{\gamma}$$

Это означает, что с увеличением  $E_{\gamma}$  и уменьшением Z вклад комптоновского рассеяния в ослабление пучка  $\gamma$ -квантов падает.

#### Эффект образования электрон - позитронных пар

При достаточно высокой энергии  $\gamma$ -квантов ( $E_{\gamma} > E_{nop}$ ) наряду с фотоэффектом и эффектом Комптона может происходить третий вид взаимодействия  $\gamma$ -квантов с веществом – образование электрон-позитронных пар. Из законов сохранения импульса и энергии можно показать, что процесс образования пар не может происходить в вакууме. Процесс рождения пар происходит лишь в кулоновском поле какой-либо частицы, получающей часть импульса и энергии. Такой частицей может быть или атомное ядро, или электрон. При этом если процесс образования пары идет в кулоновском поле ядра, необходимо выполнить неравенство

$$E_{\gamma} \ge 2m_0 c^2 + E_{\mathfrak{s}} , \qquad (7)$$

где  $2m_0c^2$  соответствует энергии рождения пары электрон-позитрон, а  $E_{\rm s}$  – энергия отдачи ядра. Так как энергия отдачи ядра сравнительно мала, то ею можно пренебречь. Первый член, стоящий в правой части неравенства (7), принято называть порогом рождения пар  $E_{\rm nop}$ .

Сечение образования пар  $\sigma_{\Pi}$  в поле атомного ядра пропорционально  $Z^2$  и растет с увеличением энергии  $\gamma$ -кванта  $E_{\gamma}$ . Выражение для сечения образования пар в поле ядра имеет достаточно сложный вид. В наиболее упрощенном аналитическом виде оно может быть представлено только для энергий  $E_{\gamma}$  в интервале  $5m_0c^2 < E_{\gamma} < 50m_0c^2$ :

$$\sigma_{\Pi} \sim Z^2 \ln E_{\gamma}.$$

Итак, полное сечение взаимодействия  $\gamma$ -квантов с веществом является суммой трех сечений  $\sigma_{\varphi}$ ,  $\sigma_{\kappa}$ ,  $\sigma_{\pi}$ :

$$\sigma = \sigma_{\oplus} + \sigma_{\kappa} + \sigma_{\Pi},$$

где каждая из величин  $\sigma_{\phi}$ ,  $\sigma_{\kappa}$ ,  $\sigma_{\Pi}$  по-разному зависит от энергии үкванта  $E_{\gamma}$  и Z. Вследствие этого в разных областях энергий ү-квантов и значений Z тот или иной механизм взаимодействия γ-излучения с веществом может оказаться доминирующим.

Из характера зависимости сечений от энергии  $\gamma$ -квантов  $E_{\gamma}$  (рис. 4) следует, что в области малых энергий ( $E_{\gamma} < E_1$ ) основным механизмом взаимодействия  $\gamma$ -квантов со средой является фотоэффект; в промежу-

точной области ( $E_1 < E_{\gamma} < E_2$ ) – эффект Комптона, а в области больших энергий ( $E_{\gamma} > E_2$ ) – процесс образования пар (значения  $E_1$  и  $E_2$  различны для различных сред).



Рис. 4. Зависимость величины сечений комптон-эффекта, фотоэффекта и эффекта образования пар от энергии у-квантов

Подводя итоги, можно сказать, что в результате всех трех выше рассмотренных процессов взаимодействия  $\gamma$ -кванты или поглощаются целиком, или теряют часть своей энергии; при этом потерянная ими энергия либо передается атомному электрону, или идет на образование электронпозитронных пар. Вновь образованные заряженные частицы (в основном электроны), проходя через вещество, тоже в свою очередь вызывают ряд явлений (например, ионизация и возбуждение атомов этого вещества). Знание вышеизложенных явлений становится очень важным, когда встает вопрос о способах регистрации  $\gamma$ -квантов.

Несмотря на многообразие процессов взаимодействия γ-квантов, сечения всех этих взаимодействий сравнительно невелики, поэтому γизлучение слабо поглощается веществом.

Необходимо отметить, что кроме вышеописанных трех механизмов взаимодействий γ-излучения с веществом существуют также ядерный фотоэффект, деление ядер и когерентное рассеяние на электронах. Эти процессы не играют заметной роли в ослаблении потока γ-квантов с энергией до нескольких мегаэлектронвольт.

# МЕТОД ОПРЕДЕЛЕНИЯ МАССОВОГО КОЭФФИЦИЕНТА ОСЛАБЛЕНИЯ

Сущность метода измерения массового коэффициента ослабления  $\gamma$ излучения крайне проста. Если  $N_0$  – количество регистрируемых  $\gamma$ квантов за время *t* при x = 0, а N(x) – количество регистрируемых  $\gamma$ квантов за такой же интервал времени после их прохождения через слой вещества толщиной *x*, то из (4) можно получить соотношение

$$N(x)/N_0 = e^{-\mu\rho x}$$
 (8)

Отношение  $N(x)/N_0$  называют функцией пропускания B(x). Из (8) получаем выражение для расчета массового коэффициента ослабления:

$$\mu = -\frac{1}{\rho x} \ln \frac{N(x)}{N_0}.$$
(9)

Толщина слоя, после прохождения которого количество регистрируемых  $\gamma$ -квантов уменьшается вдвое, называется слоем половинного ослабления  $x_{1/2}$ . Величина  $x_{1/2}$  связана со значением  $\mu$  следующим соотношением:

$$\mu = \ln 2 / \rho x_{1/2}$$
.

Зная массовый коэффициент ослабления  $\mu$  в данном веществе, по известной зависимости  $\mu$  от  $E_{\gamma}$  для этого вещества можно определить энергию  $\gamma$ -квантов  $E_{\gamma}$ . Такой метод определения энергии  $\gamma$ -квантов называется методом поглощения. И хотя он не претендует на большую

точность, в некоторых случаях может быть полезен из-за простоты реализации.

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

#### Условия проведения эксперимента

Для определения коэффициента ослабления используется выражение (9). При этом необходимо, чтобы исследуемый пучок ү-квантов был моноэнергетическим и не расходящимся. Моноэнергетическое үизлучение дают немногие радиоактивные изотопы. Одним из таких изотопов является Cs-137, энергетический спектр которого имеет только одну линию с энергией ү-квантов 661 кэВ (рис. 5). При достаточно большом расстоянии от точечного источника излучения до поглотителя расходимостью пучка можно пренебречь и считать пучок практически параллельным.

Формула (4) описывает изменение числа  $\gamma$ -квантов, непровзаимодействовавших в поглотителе, от толщины этого поглотителя. Следовательно, для ее использования необходимо выделить только те зарегистрированные  $\gamma$ -кванты, которые не испытали взаимодействия в веществе поглотителя. В случае фотоэффекта провзаимодействовавший в поглотителе  $\gamma$ -квант выбывает из пучка; в случае комптон-эффекта рассеянный на малый угол  $\gamma$ -квант может все же попасть в детектор и быть зарегистрированным. Для дискриминации таких  $\gamma$ -квантов существуют два способа.



Рис. 5. Схема распада радиоактивного изотопа Cs-137

Первый способ наиболее простой: на пути пучка между поглотителем и детектором устанавливается коллиматор с узким отверстием. Рассеянный в поглотителе ү-квант, изменив свое первоначальное направление, не попадет в отверстие коллиматора и не будет регистрироваться детектором.

Второй способ несколько сложенее и требует устройства, которое различало бы γ-кванты по энергиям (энергия рассеянных γ-квантов меньше энергии γ-квантов, не испытавших взаимодействия в поглотителе). В качестве такого устройства можно использовать сцинтилляционный γ-спектрометр. Амплитудный спектр импульсов с выхода сцинтилляционного детектора подробно описан в лабораторной работе по изучению сцинтилляционного γ-спектрометра.

Гамма-кванты с энергией  $E_0$ , не провзаимодействовавшие в поглотителе и зарегистрированные детектором за счет фотоэффекта, формируют так называемый фотопик (или пик полного поглощения), который должен иметь вид распределения Гаусса (рис. 6). Рассеянные в поглотителе  $\gamma$ -кванты и потерявшие в нем часть своей энергии ( $E < E_0$ ) тоже регистрируются детектором и вносят вклад в те каналы, которые находятся слева от максимума пика полного поглощения. Поэтому задача выделения  $\gamma$ -квантов, не провзаимодействовавших в поглотителе, сводится к выделению в амплитудном спектре пика полного поглощения, соответствующего  $\gamma$ -квантам с энергией  $E_0$ , что осуществляется с помощью спектрометра.



Рис. 6. Амплитудный спектр импульсов на выходе детектора

#### Геометрия эксперимента



Рис. 7 Геометрия эксперимента

<u>Эксперимент</u>. В качестве детектирующей системы используется детектор на основе кристалла NaI(Tl) фирмы ORTEC. Размеры кристалла составляют 3х3 дюйма.

<u>Детектор на основе NaI(TI) фирмы ORTEC</u> Гамма-кванты, взаимодействуя с веществом сцинтиллятора, вызывают световую вспышку, которая преобразуется в электрический импульс посредством фотоэлектронного умножителя (ФЭУ). ФЭУ состоит из фотокатода, фокусирующего электрода и 10 или более динодов, умножающих число электронов, падающих на каждый динод. Цепочка резисторов, обычно расположенных в виде делителя на разъеме ФЭУ, обеспечивает потенциалы на динодах и аноде. Таким образом, детектор в комплекте состоит из сцинтиллятора и ФЭУ.

Требования, предъявляемые к таким детекторам – хорошая прозрачность, возможность изготовления больших размеров, и самое главное – максимально большой выход света пропорционально энергии гамма-квантов. Несколько материалов обеспечивают такие параметры – активированный таллием йодид натрия NaI(Tl) и йодид цезия CsI(Tl), а также некоторые пластические сцинтилляторы. CsI(Tl) и пластические сцинтилляторы обладают намного лучшими временнЫми параметрами по сравнению с NaI(Tl) и поэтому часто применяются при необходимости получения лучшего временнОго разрешения.

Высокий Z йода в NaI(Tl) приводит к высокой эффективности регистрации гамма-квантов.

Энергетическое разрешение кристалла NaI(Tl) диаметром 3 дюйма и длиной 3 дюйма составляет около 7% для <sup>137</sup>Сs и немного ухудшается с увеличением размеров.

ВременнОе разрешение кристалла NaI(Tl) составляет примерно 0.23 мксек. Типовой зарядово-чувствительный предусилитель переводит сигнал с ФЭУ в импульс напряжения с временем нарастания переднего фронта около 0.5 мксек. Быстрое совпадение при таких параметрах невозможно, особенно при низких энериях.



Рис. 8. Детектор на основе NaI(Tl) фирмы ORTEC



Рис. 9. Лабораторная установка с алюминиевыми поглотителями.

# Лабораторная работа

## Подключение детектора

1. Включить компьютер

- 2. Подключить разъем детектора к входу USB компьютера
- 3. Открыть программу MAESTRO
- 4. Убедиться, что в окне Buffer высвечивается детектор 001USER-PC22MCB130. Если другое – обратиться к руководителю.
- 5. Нажать "Acquire MCB Properties"
- 6. High Voltage ON
- 7. Установить напряжение на детекторе 590 Вольт, если не установлено.

<u>Калибровка детектора радиоактивными источниками <sup>241</sup>Ат и <sup>137</sup>Сs</u>

- 1. Достать из сейфа контейнер с радиоктивным источником <sup>241</sup>Am, извлечь источник из контейнера.
- 2. Установить радиоактивный источник <sup>241</sup>Ат перед окном детектора.
- 3. Установить время набора спектра, для этого Acquire MCB Properties Preset Real time 500 секунд.
- 4. Начать набор спектра кнопкой "Go" погаснет зеленая индикация "Go", загорится красная индикация "Stop".
- 5. Контролировать показатель мертвого времени набора "Dead Time" в правом верхнем окне должен быть не более 10%.
- 6. По завершении набора загорится индикация "Go".
- 7. На экране высвечивается энергетический спектр от радиоактиваного источника <sup>241</sup>Am.
- 8. Передвижением курсора стрелками влево-вправо установить курсор на пиковое значение спектра.
- 9. С нижней части экрана считать значение номера канала под названием "Marker".
- 10. "Calculate Calibration Destroy calibration"
- 11.Установить значение энергии излучения от <sup>241</sup>Am в окне энергии, для <sup>241</sup>Am это значение составляет 59.54 КэВ.

- 12.Удалить <sup>241</sup>Ат в контейнер, спрятать в сейф.
- 13.Достать из сейфа контейнер с радиоктивным источником <sup>137</sup>Cs, извлечь источник из контейнера.
- 14. Установить радиоактивный источник <sup>137</sup>Сs перед окном детектора.
- 15. Повторить пункты 3-10 для <sup>137</sup>Сs.
- 16.Установить значение энергии излучения от <sup>137</sup>Cs в окне энергии, для <sup>137</sup>Cs это значение составляет 661 КэВ.
- 17.ОК завершить калибровку, выйти из окна калибровки.

#### Порядок проведения эксперимента

#### Измерение функции пропускания у- излучения в свинцовом поглотителе

Набрать амплитудные спектры выходных импульсов при 5 различных толщинах *x* свинцового поглотителя, помещаемого между сцинтиллятором и источником. Первое измерение спектра провести в отсутствии поглотителя. Набранные спектры записать в файлы. Сохранить измеренный спектр "File – Save As", выбрать свою директорию (для каждого студента создана своя индивидуальная директория)

"MyDocuments\_LabWork\_Gamma\_Students\_StudentName"

(StudentName=Andranik, Armine, Anush or Mher), в двух расширениях – Integer ChN и ASCII SPE, под названием Pb0(1,2,3,4,5). Пояснение: Pb0 – спектр без свинцового поглотителя, Pb1 – спектр с 1 слоем поглотителя и т.д.

2. Аналогично набрать амплитудные спектры выходных импульсов при 5 различных толщинах *х* алюминиевого поглотителя, помещаемого между сцинтиллятором и источником. Первое измерение спектра провести в отсутствии поглотителя. Набранные спектры записать в файлы. Сохранить измеренный спектр "File – Save As", выбрать свою директорию (для каждого студента создана своя индивидуальная директория) "Му Documents\_LabWork\_Gamma\_Students\_StudentName" (StudentName=Andranik, Armine, Anush or Mher), в двух расшире-

ниях – Integer ChN и ASCII SPE, под названием Al0(1,2,3,4,5). Пояснение: Al0 – спектр без поглотителя, Al1 – спектр с 1 слоем поглотителя и т.д.

#### Обработка результатов эксперимента

1. Выделить в полученных спектрах пики полного поглощения. Оценить площадь под пиками полного поглощения *P* (найти интегральное число частиц в пиках).

2. Вычислить функцию пропускания B(x), равную отношению P(x) к P(x = 0).

3. На основании полученных данных построить график B(x). Объяснить ход зависимости (пример приведен на рис. 10).



*Puc. 10.* Экспериментально полученная функция пропускания *B*(*x*) γ-излучения для свинцового поглотителя

4. Полученную в эксперименте функцию пропускания B(x) аппроксимировать экспоненциальной функцией (Пример приведен на рис. 11). Найти линейный коэффициент ослабления т  $\gamma$ -излучения Cs-137 в свинце.



5. Зная плотность свинца (ρ = 11,35 г/см<sup>3</sup>), вычислить массовый коэффициент ослабления μ.

6. Построить экспериментальную функцию пропускания B(x) в полулогарифмическом масштабе. Аппроксимировать полученную зависимость линейной функцией y(x) = ax + b. Найти линейный коэффициент ослабления  $\tau \gamma$ -излучения Cs-137 в свинце.

7. Повторить задания 1–6 для экспериментальных результатов, полученных при использовании алюминиевых поглотителей (ρ = 2,7 г/см<sup>3</sup>).

8. Определить вклады комптоновского рассеяния и фотоэффекта в экспериментальный спектр  $\gamma$ -квантов. Выделить в амплитудном спектре, измеренном в отсутствии поглотителя, часть, которая соответствует комптоновскому рассеянию (см. рис. 6). Вычислить площадь под комптоновским распределением  $P_{\kappa}$ . Величина  $P_{\kappa}$  определяется числом  $\gamma$ -квантов, провзаимодействовавших в сцинтилляторе за счет комптонэффекта. Площадь под пиком полного поглощения (фотопиком) P, вычисленная в пункте 1, определяется числом  $\gamma$ -квантов, провзаимодействовавших в сцинтилляторе за счет комптон-эффекта. Так как коэффициент  $\mu$  пропорционален числу актов взаимодействия, можно написать следующее соотношение:

$$P/P_{\rm K} = \mu_{\rm fr}/\mu_{\rm K}$$
,

где  $\mu_{\phi}$ ,  $\mu_{\kappa}$  – коэффициенты поглощения за счет фото- и комптонэффектов в веществе сцинтиллятора.

Поскольку полный коэффициент поглощения  $\gamma$ -квантов в веществе сцинтиллятора  $\mu = \mu_{\phi} + \mu_{\kappa}$  известен и равен 0,076 см<sup>2</sup>/г, можно отдельно найти коэффициенты  $\mu_{\phi}$  и  $\mu_{\kappa}$ .